Relativistic Non-Hermitian Quantum Mechanics

نویسندگان

  • Katherine Jones-Smith
  • Harsh Mathur
چکیده

We develop relativistic wave equations in the framework of the new non-hermitian PT quantum mechanics. The familiar Hermitian Dirac equation emerges as an exact result of imposing the Dirac algebra, the criteria of PT -symmetric quantum mechanics, and relativistic invariance. However, relaxing the constraint that in particular the mass matrix be Hermitian also allows for models that have no counterpart in conventional quantum mechanics. For example it is well-known that a quartet of Weyl spinors coupled by a Hermitian mass matrix reduces to two independent Dirac fermions; here we show that the same quartet of Weyl spinors, when coupled by a non-Hermitian but PT symmetric mass matrix, describes a single relativistic particle that can have massless dispersion relation even though the mass matrix is non-zero. The PT -generalized Dirac equation is also Lorentz invariant, unitary in time, and CPT respecting, even though as a non-interacting theory it violates P and T individually. The relativistic wave equations are reformulated as canonical fermionic field theories to facilitate the study of interactions, and are shown to maintain many of the canonical structures from Hermitian field theory, but with new and interesting new possibilities permitted by the non-hermiticity parameter m2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experiments in PT −symmetric quantum mechanics

Extended quantum mechanics using non-Hermitian (pseudo-Hermitian) Hamiltonians H = H is briefly reviewed. A few related mathematical experiments concerning supersymmetric regularizations, solvable simulations and large-N expansion techniques are summarized. We suggest that they could initiate a deeper study of non-localized structures (quasi-particles) and/or of their unstable and many-particle...

متن کامل

Pseudo-Hermitian Quantum Mechanics

A diagonalizable non-Hermitian Hamiltonian having a real spectrum may be used to define a unitary quantum system, if one modifies the inner product of the Hilbert space properly. We give a comprehensive and essentially self-contained review of the basic ideas and techniques responsible for the recent developments in this subject. We provide a critical assessment of the role of the geometry of t...

متن کامل

Remarks on the GNS Representation and the Geometry of Quantum States

It is shown how to introduce a geometric description of the algebraic approach to the non-relativistic quantum mechanics. It turns out that the GNS representation provides not only symplectic but also Hermitian realization of a ‘quantum Poisson algebra’. We discuss alternative Hamiltonian structures emerging out of different GNS representations which provide a natural setting for quantum bi-Ham...

متن کامل

Hermitian metric on quantum spheres

The paper deal with non-commutative geometry. The notion of quantumspheres was introduced by podles. Here we define the quantum hermitianmetric on the quantum spaces and find it for the quantum spheres.

متن کامل

PT −symmetric regularizations in supersymmetric quantum mechanics

Within the supersymmetric quantum mechanics the necessary regularization of the poles of the superpotentials on the real line of coordinates x may be most easily mediated by a small constant shift of this axis into complex plane. Detailed attention is paid here to the resulting recipe which works, in effect, with non-Hermitian (a. k. a. PT −symmetric or pseudo-Hermitian) Hamiltonians. Besides a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014